Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3.

Identifieur interne : 000423 ( Main/Exploration ); précédent : 000422; suivant : 000424

mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3.

Auteurs : Guoli Shi [États-Unis] ; Stosh Ozog [États-Unis] ; Bruce E. Torbett [États-Unis] ; Alex A. Compton [États-Unis]

Source :

RBID : pubmed:30301809

Descripteurs français

English descriptors

Abstract

Rapamycin and its derivatives are specific inhibitors of mammalian target of rapamycin (mTOR) kinase and, as a result, are well-established immunosuppressants and antitumorigenic agents. Additionally, this class of drug promotes gene delivery by facilitating lentiviral vector entry into cells, revealing its potential to improve gene therapy efforts. However, the precise mechanism was unknown. Here, we report that mTOR inhibitor treatment results in down-regulation of the IFN-induced transmembrane (IFITM) proteins. IFITM proteins, especially IFITM3, are potent inhibitors of virus-cell fusion and are broadly active against a range of pathogenic viruses. We found that the effect of rapamycin treatment on lentiviral transduction is diminished upon IFITM silencing or knockout in primary and transformed cells, and the extent of transduction enhancement depends on basal expression of IFITM proteins, with a major contribution from IFITM3. The effect of rapamycin treatment on IFITM3 manifests at the level of protein, but not mRNA, and is selective, as many other endosome-associated transmembrane proteins are unaffected. Rapamycin-mediated degradation of IFITM3 requires endosomal trafficking, ubiquitination, endosomal sorting complex required for transport (ESCRT) machinery, and lysosomal acidification. Since IFITM proteins exhibit broad antiviral activity, we show that mTOR inhibition also promotes infection by another IFITM-sensitive virus, Influenza A virus, but not infection by Sendai virus, which is IFITM-resistant. Our results identify the molecular basis by which mTOR inhibitors enhance virus entry into cells and reveal a previously unrecognized immunosuppressive feature of these clinically important drugs. In addition, this study uncovers a functional convergence between the mTOR pathway and IFITM proteins at endolysosomal membranes.

DOI: 10.1073/pnas.1811892115
PubMed: 30301809
PubMed Central: PMC6205447


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3.</title>
<author>
<name sortKey="Shi, Guoli" sort="Shi, Guoli" uniqKey="Shi G" first="Guoli" last="Shi">Guoli Shi</name>
<affiliation wicri:level="2">
<nlm:affiliation>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ozog, Stosh" sort="Ozog, Stosh" uniqKey="Ozog S" first="Stosh" last="Ozog">Stosh Ozog</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Torbett, Bruce E" sort="Torbett, Bruce E" uniqKey="Torbett B" first="Bruce E" last="Torbett">Bruce E. Torbett</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Compton, Alex A" sort="Compton, Alex A" uniqKey="Compton A" first="Alex A" last="Compton">Alex A. Compton</name>
<affiliation wicri:level="2">
<nlm:affiliation>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702; alex.compton@nih.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30301809</idno>
<idno type="pmid">30301809</idno>
<idno type="doi">10.1073/pnas.1811892115</idno>
<idno type="pmc">PMC6205447</idno>
<idno type="wicri:Area/Main/Corpus">000439</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000439</idno>
<idno type="wicri:Area/Main/Curation">000439</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000439</idno>
<idno type="wicri:Area/Main/Exploration">000439</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3.</title>
<author>
<name sortKey="Shi, Guoli" sort="Shi, Guoli" uniqKey="Shi G" first="Guoli" last="Shi">Guoli Shi</name>
<affiliation wicri:level="2">
<nlm:affiliation>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ozog, Stosh" sort="Ozog, Stosh" uniqKey="Ozog S" first="Stosh" last="Ozog">Stosh Ozog</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Torbett, Bruce E" sort="Torbett, Bruce E" uniqKey="Torbett B" first="Bruce E" last="Torbett">Bruce E. Torbett</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Compton, Alex A" sort="Compton, Alex A" uniqKey="Compton A" first="Alex A" last="Compton">Alex A. Compton</name>
<affiliation wicri:level="2">
<nlm:affiliation>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702; alex.compton@nih.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (pharmacology)</term>
<term>Cell Line (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Endosomes (drug effects)</term>
<term>Endosomes (metabolism)</term>
<term>Endosomes (virology)</term>
<term>HEK293 Cells (MeSH)</term>
<term>HeLa Cells (MeSH)</term>
<term>Host-Pathogen Interactions (drug effects)</term>
<term>Humans (MeSH)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Protein Transport (drug effects)</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>TOR Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>Virus Diseases (drug therapy)</term>
<term>Virus Diseases (metabolism)</term>
<term>Virus Diseases (virology)</term>
<term>Virus Internalization (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antiviraux (pharmacologie)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>Cellules HeLa (MeSH)</term>
<term>Endosomes (effets des médicaments et des substances chimiques)</term>
<term>Endosomes (métabolisme)</term>
<term>Endosomes (virologie)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-pathogène (effets des médicaments et des substances chimiques)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Maladies virales (métabolisme)</term>
<term>Maladies virales (traitement médicamenteux)</term>
<term>Maladies virales (virologie)</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Pénétration virale (effets des médicaments et des substances chimiques)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sérine-thréonine kinases TOR (antagonistes et inhibiteurs)</term>
<term>Transport des protéines (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Proteins</term>
<term>RNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endosomes</term>
<term>Host-Pathogen Interactions</term>
<term>Protein Transport</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Endosomes</term>
<term>Interactions hôte-pathogène</term>
<term>Pénétration virale</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endosomes</term>
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Endosomes</term>
<term>Maladies virales</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Maladies virales</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Endosomes</term>
<term>Maladies virales</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Endosomes</term>
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Cell Line, Tumor</term>
<term>HEK293 Cells</term>
<term>HeLa Cells</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HEK293</term>
<term>Cellules HeLa</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Lignée cellulaire tumorale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rapamycin and its derivatives are specific inhibitors of mammalian target of rapamycin (mTOR) kinase and, as a result, are well-established immunosuppressants and antitumorigenic agents. Additionally, this class of drug promotes gene delivery by facilitating lentiviral vector entry into cells, revealing its potential to improve gene therapy efforts. However, the precise mechanism was unknown. Here, we report that mTOR inhibitor treatment results in down-regulation of the IFN-induced transmembrane (IFITM) proteins. IFITM proteins, especially IFITM3, are potent inhibitors of virus-cell fusion and are broadly active against a range of pathogenic viruses. We found that the effect of rapamycin treatment on lentiviral transduction is diminished upon IFITM silencing or knockout in primary and transformed cells, and the extent of transduction enhancement depends on basal expression of IFITM proteins, with a major contribution from IFITM3. The effect of rapamycin treatment on IFITM3 manifests at the level of protein, but not mRNA, and is selective, as many other endosome-associated transmembrane proteins are unaffected. Rapamycin-mediated degradation of IFITM3 requires endosomal trafficking, ubiquitination, endosomal sorting complex required for transport (ESCRT) machinery, and lysosomal acidification. Since IFITM proteins exhibit broad antiviral activity, we show that mTOR inhibition also promotes infection by another IFITM-sensitive virus, Influenza A virus, but not infection by Sendai virus, which is IFITM-resistant. Our results identify the molecular basis by which mTOR inhibitors enhance virus entry into cells and reveal a previously unrecognized immunosuppressive feature of these clinically important drugs. In addition, this study uncovers a functional convergence between the mTOR pathway and IFITM proteins at endolysosomal membranes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30301809</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>115</Volume>
<Issue>43</Issue>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3.</ArticleTitle>
<Pagination>
<MedlinePgn>E10069-E10078</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1811892115</ELocationID>
<Abstract>
<AbstractText>Rapamycin and its derivatives are specific inhibitors of mammalian target of rapamycin (mTOR) kinase and, as a result, are well-established immunosuppressants and antitumorigenic agents. Additionally, this class of drug promotes gene delivery by facilitating lentiviral vector entry into cells, revealing its potential to improve gene therapy efforts. However, the precise mechanism was unknown. Here, we report that mTOR inhibitor treatment results in down-regulation of the IFN-induced transmembrane (IFITM) proteins. IFITM proteins, especially IFITM3, are potent inhibitors of virus-cell fusion and are broadly active against a range of pathogenic viruses. We found that the effect of rapamycin treatment on lentiviral transduction is diminished upon IFITM silencing or knockout in primary and transformed cells, and the extent of transduction enhancement depends on basal expression of IFITM proteins, with a major contribution from IFITM3. The effect of rapamycin treatment on IFITM3 manifests at the level of protein, but not mRNA, and is selective, as many other endosome-associated transmembrane proteins are unaffected. Rapamycin-mediated degradation of IFITM3 requires endosomal trafficking, ubiquitination, endosomal sorting complex required for transport (ESCRT) machinery, and lysosomal acidification. Since IFITM proteins exhibit broad antiviral activity, we show that mTOR inhibition also promotes infection by another IFITM-sensitive virus, Influenza A virus, but not infection by Sendai virus, which is IFITM-resistant. Our results identify the molecular basis by which mTOR inhibitors enhance virus entry into cells and reveal a previously unrecognized immunosuppressive feature of these clinically important drugs. In addition, this study uncovers a functional convergence between the mTOR pathway and IFITM proteins at endolysosomal membranes.</AbstractText>
<CopyrightInformation>Copyright © 2018 the Author(s). Published by PNAS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Guoli</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ozog</LastName>
<ForeName>Stosh</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Torbett</LastName>
<ForeName>Bruce E</ForeName>
<Initials>BE</Initials>
<AffiliationInfo>
<Affiliation>Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Compton</LastName>
<ForeName>Alex A</ForeName>
<Initials>AA</Initials>
<Identifier Source="ORCID">0000-0002-7508-4953</Identifier>
<AffiliationInfo>
<Affiliation>HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702; alex.compton@nih.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F30 HL137563</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 AI036214</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007198</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 GM103368</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080082">IFITM3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546842">MTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014777" MajorTopicYN="N">Virus Diseases</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">IFITM</Keyword>
<Keyword MajorTopicYN="Y">endosome</Keyword>
<Keyword MajorTopicYN="Y">fusion</Keyword>
<Keyword MajorTopicYN="Y">interferon</Keyword>
<Keyword MajorTopicYN="Y">virus</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30301809</ArticleId>
<ArticleId IdType="pii">1811892115</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1811892115</ArticleId>
<ArticleId IdType="pmc">PMC6205447</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Immunol. 2017 Apr 24;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28435158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2005 Jul;7(7):653-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22046135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000 Biol Rep. 2011;3:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2014 Jul;16(7):1080-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24521078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Aug 26;90(18):8212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27384652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Blood Marrow Transplant. 2011 Jan;17(1 Suppl):S2-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21195305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2014 Aug 7;124(6):913-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24914132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2005 Jul;7(7):641-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15990891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Apr;69(4):2058-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7884851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2005 Nov;12(5):900-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2014 Feb;4:71-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24480526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2017 Nov 21;14(1):53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29162141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sensors (Basel). 2016 Jun 23;16(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27347948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Aug;28(15):4688-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18505827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2014 Nov 1;1:261-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25599080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2013 May;61(5):679-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Jun 14;36(12):1653-1668</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28473450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7306-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23589850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Apr 21;22(2):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2016 Dec 1;129(23):4329-4339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Jun 29;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28661397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Aug 11;11(8):e1005095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26263374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2018 Sep;15(9):858-867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28435159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jan;76(2):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Apr 25;289(17):11986-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24627473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Apr 03;10(4):e1004048</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2011 Jul 19;21(1):77-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21763610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Sep;8(9):e1002909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22969429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jan 06;7(1):e1001258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21253575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Feb 5;57(3):467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7112-7117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28630320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Aug;8(8):622-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 25;484(7395):519-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22446628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 2013 Jun 25;108(12):2478-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23736025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AAPS J. 2009 Mar;11(1):65-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19194803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2015 Feb;23(2):352-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25270076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Aug;84(16):8181-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2018 Jan 25;172(3):423-438.e25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29249360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Dec 24;139(7):1243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2015 Jan;17(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25131332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Oncol. 2013 Aug;24(8):2092-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23658373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 1;287(23):19631-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22511783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2014 Dec 15;745:166-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25218983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jan 3;168(1):89-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15623582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Mar 31;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28362576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Apr 1;8(7):1026-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Oct 12;20(4):429-442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27640936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Feb 20;513(1):30-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11911877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2013 Dec 13;425(24):4937-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24076421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2017 Jun 20;86:225-244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood Cells Mol Dis. 2011 Apr 15;46(4):318-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21411351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2012 Feb 16;13(3):214-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 May 11;6:7007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25959678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Oct 6;13(1):145-156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26387945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2016 Nov;17(11):1657-1671</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27601221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Dec 10;16(6):736-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25464829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15790-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26669439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jun 23;7(1):4136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28646236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2016 Jul;23(7):627-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27052803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2013;82:663-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Mar;85(5):2126-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 2018 Mar;96(3):284-297</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29356071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2009 Aug;9(8):493-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 May 1;117(Pt 11):2357-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15126635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Nov 3;13(5):874-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26565900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Sep 21;171(1):10-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28888322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Hematol. 2015 Jul;22(4):302-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26049750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2013 Mar;14(3):238-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23354485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(24):13697-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2014 Nov 25;11:103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25422070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2017 Aug;23(8):975-983</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28714988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Interferon Cytokine Res. 1996 May;16(5):375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8727077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Apr;70(4):2581-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8642689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jun 11;522(7555):221-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25896322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2014 Mar 4;19(3):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24508508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Jul 3;36(13):1811-1836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2018 Apr;39(4):328-340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29526487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12646-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e24135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21915289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Aug 31;30(17):3481-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Interferon Cytokine Res. 2011 Jan;31(1):183-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21166591</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Shi, Guoli" sort="Shi, Guoli" uniqKey="Shi G" first="Guoli" last="Shi">Guoli Shi</name>
</region>
<name sortKey="Compton, Alex A" sort="Compton, Alex A" uniqKey="Compton A" first="Alex A" last="Compton">Alex A. Compton</name>
<name sortKey="Ozog, Stosh" sort="Ozog, Stosh" uniqKey="Ozog S" first="Stosh" last="Ozog">Stosh Ozog</name>
<name sortKey="Torbett, Bruce E" sort="Torbett, Bruce E" uniqKey="Torbett B" first="Bruce E" last="Torbett">Bruce E. Torbett</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000423 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000423 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30301809
   |texte=   mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30301809" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020